Traînées de condensation laissées par un avion volant à haute altitude. William Hook / Unsplash
  • The Conversation

CO₂, NOx, vapeur d’eau et aérosols : comment bien comptabiliser tous les effets de l’aviation sur le climat ?

Comme tout secteur économique, l’aviation a un impact sur le climat et contribue au réchauffement climatique en cours.

Cette contribution est largement dominée par les émissions en vol des avions : elle est due aux émissions de dioxyde de carbone (CO2) – en 2018, elles représentaient 2,5% des émissions mondiales de CO2 dues aux énergies fossiles –, mais aussi à un certain nombre d’effets dits « non-CO2 ».

Ces effets « non-CO2 » sont liés aux oxydes d’azote (NOx), à la vapeur d’eau, et aux particules – aussi appelées aérosols lorsque ces particules sont en suspension dans l’air – émis lors de la combustion du kérosène par les moteurs.

Les effets non-CO₂ de l’aviation

Les NOx n’ont pas d’effet direct sur le climat, mais ils ont un impact sur l’ozone (dont ils contribuent à augmenter la concentration à court terme) et le méthane (dont ils contribuent à diminuer la concentration sur le moyen terme). Or l’ozone (O3) et le méthane (CH4) sont deux gaz à effet de serre.

Dans les conditions actuelles, il est couramment admis que l’effet réchauffant de l’augmentation de l’ozone due à l’aviation l’emporte sur l’effet refroidissant de la diminution du méthane. L’effet résultant dépend non seulement de la quantité de NOx émise, qui dépend des modèles d’avion, mais aussi de l’altitude, de la latitude et de la saison du vol.

La vapeur d’eau émise par les avions est un gaz à effet de serre qui tend à réchauffer le climat quand elle est émise en altitude. Mais, surtout, elle est à l’origine de traînées de condensation quand les conditions atmosphériques permettent leur formation – et la transformation occasionnelle de celles-ci en nuages cirrus.

Dans ce dernier cas, on parle de « cirrus induits par les traînées » ; la glace qui constitue les cirrus ne se serait pas condensée sans le passage de l’avion ou alors elle l’aurait fait seulement plus tard.

L’effet de serre réchauffant des traînées d’avion et des cirrus l’emporte sur leur effet d’albédo refroidissant. Mais, là aussi, il y a des variations très importantes sur l’effet total selon les conditions atmosphériques, la latitude, l’heure du vol et la saison.

Enfin, les particules émises par les avions peuvent modifier les propriétés optiques des différents types de nuages qu’elles rencontrent avant d’être entraînées par les pluies ou déposées à la surface. Ces effets sont néanmoins très complexes et encore très incertains, si bien que même leur caractère réchauffant ou refroidissant reste inconnu.

Infographie montrant les différents effets de l’aviation sur le climat
Les impacts climatiques de l’aviation. Climaviation, Bruno Giusti / CC BY-NC-ND

Des échelles de temps différentes

Plusieurs échelles de temps distinctes sont associées à ces différents effets.

Le CO2 est un gaz à longue durée de vie dans l’atmosphère. Quand une tonne de CO2 fossile est émise dans l’atmosphère, environ 30 % de l’augmentation initiale de la concentration persiste après 100 ans et encore 20 % après 400 ans.

À l’inverse, les NOx, les particules et la vapeur d’eau disparaissent de l’atmosphère après quelques semaines s’ils sont émis à l’altitude de croisière des avions. Il en est de même de leurs effets induits sur l’ozone ou sur les nuages.

En revanche, les effets des NOx émis par l’aviation sur le méthane se matérialisent sur une échelle de temps intermédiaire puisque la durée de vie du méthane dans l’atmosphère suite à une perturbation est de 12 ans.

Au-delà des échelles de temps associées à la durée de vie des espèces chimiques, il faut aussi considérer celles du système climatique lui-même. Une perturbation de l’énergie introduite dans le système climatique, même sur une courte durée, a un impact durable sur le climat, car l’océan absorbe cette énergie additionnelle avant de la restituer progressivement à l’atmosphère.

L’indice de forçage radiatif, une mauvaise idée pour comptabiliser les émissions

On mesure habituellement les perturbations du climat via le concept de « forçage radiatif » : cette quantité mesure le déséquilibre radiatif de la planète dû aux émissions passées ; elle est exprimée par rapport à une période de référence généralement fixée à 1850, une époque où les activités industrielles étaient encore faibles.

Pour le CO2, qui a une longue durée de vie dans l’atmosphère, et dans une moindre mesure le méthane, cela intègre les émissions passées qui impactent durablement les concentrations atmosphériques. Pour des polluants à courte durée de vie, seules les émissions les plus récentes importent, car les émissions les plus anciennes n’exercent plus de forçage radiatif.

Pour le secteur de l’aviation, en l’état actuel des connaissances, les effets non-CO2 sont responsables d’un forçage radiatif positif qui tend à réchauffer le climat. Le rapport entre le forçage radiatif total et le forçage radiatif dû au CO2 est appelé Radiative Forcing Index (ou RFI).

Certains calculateurs de l’empreinte carbone utilisent le RFI comme facteur multiplicatif des émissions de CO2 pour prendre en compte les effets non-CO2 et « convertir » ainsi les émissions de CO2 en « CO2-équivalent ». Nous estimons toutefois que cela n’a pas grand sens.

Pour nous en convaincre, nous pouvons faire l’expérience de pensée suivante : admettons qu’avant la crise du Covid-19, en 2019, les effets non-CO2 soient responsables d’un forçage radiatif double de celui du CO2, ce qui correspond à un RFI de 3 (c’est-à-dire, (2 + 1)/1). À une tonne de CO2 émise par l’aviation correspondraient donc 3 tonnes de « CO2-équivalent ».

Au pic de la crise du Covid-19, au printemps 2020, l’activité aérienne a été divisée par un facteur 4. Les émissions de CO2 dues à l’aviation ont alors drastiquement baissé par rapport à leur niveau de 2019, mais cela n’a pas entraîné une diminution du forçage radiatif dû au CO2, car sa concentration dans l’atmosphère a continué de croître.

Le forçage radiatif des effets non-CO2, au contraire, a diminué de concert avec la diminution du trafic (voire plus d’un facteur 4, car les effets sur le méthane des émissions passées perdurent dans le temps). Pendant le Covid-19, en prenant en compte le même forçage radiatif pour le CO2 – qui n’augmente que très légèrement d’une année sur l’autre – mais un forçage divisé par 4 pour les effets « non-CO2 » pour prendre en considération la réduction du trafic en 2020, nous arrivons à un RFI de 1,5 (c’est-à-dire, (2/4 + 1)/1). À une tonne de CO2 émise par l’aviation ne correspondraient donc plus que 1,5 tonnes de CO2-équivalent au lieu des 3 tonnes de CO2-équivalent d’avant le Covid.

On arrive ici à un non-sens car les vols réalisés au printemps 2020 ont bien entendu le même impact climatique que les mêmes vols réalisés au printemps 2019 ! Il n’y a donc pas de raison que les vols de 2020 « comptent » moitié moins que ceux de 2019.

La raison fondamentale pour laquelle le RFI n’est pas approprié comme coefficient multiplicatif est que le forçage radiatif cumule les effets des émissions passées alors que nous souhaitons comparer les effets climatiques des émissions actuelles, soit pour attribuer à un utilisateur de l’aviation sa juste part d’émissions, soit pour évaluer différentes options d’ordre technologique ou opérationnelle qui pourraient être mises en œuvre dans le futur.

Quelle métrique climatique utiliser ?

Heureusement, il existe des métriques du changement climatique qui permettent d’estimer l’impact climatique futur d’un vol effectué aujourd’hui, et ce malgré la courte échelle de temps du forçage radiatif des effets non-CO2.

En particulier, le pouvoir de réchauffement global (PRG), qui permet de mesurer l’impact radiatif sur une période future, typiquement 100 ans, d’émissions qui ont lieu de manière ponctuelle. On peut alors comparer le PRG d’un kg de polluant (comme le CH4 ou les NOx) avec celui d’un kg de CO2 et le concept peut facilement être étendu aux traînées d’avion.

Une autre métrique, le pouvoir de changement global de température (PGT), est définie de manière similaire, mais à partir de la variation de la température moyenne à la surface à une certaine échéance (50 ou 100 ans) après un pulse d’émission.

Ces métriques conduisent à des facteurs multiplicatifs du CO2 beaucoup plus faibles que le RFI sauf si des échéances beaucoup plus courtes que 50 ans sont choisies. Le choix de l’échéance est un choix politique qui peut avoir des implications importantes. Une échéance courte néglige la partie substantielle du réchauffement dû au CO2 qui se produit au-delà de l’échéance. Choisir une échéance longue peut minimiser l’efficacité à court terme des solutions de réduction du réchauffement basées sur les effets non-CO2.

Afin d’illustrer l’importance de la métrique utilisée pour estimer l’impact total de l’aviation sur le climat ou lors du calcul de l’empreinte carbone, comparons le RFI de l'aviation aux facteurs multiplicatifs associés à ces autres métriques.

D’après une estimation récente, les différents forçages radiatifs de l’aviation entraînent un RFI de 2,9. Si l’on utilise le PRG à un horizon temporel de 100 ans pour calculer les émissions équivalentes des différentes perturbations de l’aviation, on en déduit un facteur multiplicatif de 1,7. Pour le PGT à une échéance temporelle de 100 ans également, le facteur multiplicatif n’est plus que de 1,1.

On voit donc que le choix d’une métrique plutôt qu’une autre s’avère bien crucial pour calculer le facteur multiplicatif.

Graphe montrant les différentes manières de calculer l’impact de l’aviation sur le climat
Afin d’illustrer l’importance de la métrique utilisée pour estimer l’impact total de l’aviation sur le climat ou lors du calcul de l’empreinte carbone, comparons le RFI de l'aviation aux facteurs multiplicatifs associés à ces autres métriques. D’après l’estimation récente de Lee et al. (2021), les différents forçages radiatifs de l’aviation entraînent un RFI de 2,9. Si l’on utilise le PRG à un horizon temporel de 100 ans pour calculer les émissions équivalentes des différentes perturbations de l’aviation, on en déduit un facteur multiplicatif de 1,7. Pour le PGT à une échéance temporelle de 100 ans également, le facteur multiplicatif n’est plus que de 1,1. On voit donc que le choix d’une métrique plutôt qu’une autre s’avère bien crucial pour calculer le coefficient multiplicateur. Auteurs, CC BY-NC-ND

Une aide à la décision

Certaines solutions envisagées pour réduire les impacts climatiques de l’aviation ont le double avantage de diminuer à la fois les effets CO2 et non-CO2.

Dans ce cas de figure, les métriques servent simplement à quantifier le gain net pour le climat. En revanche, d’autres solutions nécessitent de faire un compromis entre les effets CO2 et non-CO2 de l’aviation. Par exemple, les fabricants de moteurs savent réduire les émissions de NOx mais souvent au détriment des émissions de CO2. Un carburant partiellement ou totalement décarboné, comme l’hydrogène, pourrait induire des effets non-CO2 plus importants.

On peut aussi envisager des stratégies de modification des trajectoires des avions pour diminuer les effets des traînées ou des NOx, mais au prix sans doute d’une augmentation de la consommation de carburant et donc du CO2 émis. Il est pertinent dans ces cas de figure de comparer les différents effets (CO2 et non-CO2) avec plusieurs métriques adaptées pour comprendre quel effet l’emporte sur l’autre et à quelles échéances (20, 50 et 100 ans par exemple) et pouvoir prendre les meilleures décisions possibles.

En l’état actuel de nos connaissances, les effets non-CO2 de l’aviation ont, dans l’ensemble, un effet réchauffant sur le climat. Il est donc pertinent d’essayer de les réduire pour diminuer l’impact total de l’aviation sur le réchauffement.

Il faut aussi s’assurer que les technologies en cours de développement pour décarboner l’aviation n’induisent pas des effets non-CO2 trop importants. Chaque solution doit être examinée et ses impacts doivent être évalués avec les métriques climatiques les plus adaptées sans oublier de prendre en compte d’éventuels autres impacts (qualité de l’air, bruit, biodiversité…).


Grégoire Dannet, Responsable projet Climaviation, Sorbonne Université; Didier Hauglustaine, Directeur de recherche au CNRS, spécialiste des interactions entre la chimie atmosphérique et le climat, Sorbonne Université; Nicolas Bellouin, Professor of Climate Processes, University of Reading et Olivier Boucher, Directeur de recherche au CNRS, Sorbonne Université

Cet article est republié à partir de The Conversation sous licence Creative Commons. Lire l’article original.

The Conversation

Préparer ma rentrée 2023-2024

Retrouvez toutes les étapes pour bien préparer votre rentrée, du dépôt de vos candidatures jusqu'au début de votre année universitaire.

Préparer ma rentrée slider

Candidater en première année de licence sur Parcoursup

Les candidatures en licence s'effectuent sur la plateforme nationale en ligne Parcoursup. Retrouvez le calendrier ainsi que nos fiches conseil pour vous accompagner lors des différentes étapes de la procédure.

Candidater en première année de master

Les candidatures en master s'effectuent à partir de cette année sur la plateforme nationale en ligne Mon Master. Retrouvez toutes les étapes à suivre pour effectuer vos recherches et candidater aux formations qui vous intéressent.

candidater première année de master


Quand nous nous sommes réveillés

Par Luba Jurgenson

Nuit du 24 février 2022 : invasion de l'Ukraine

La ville des enfants

Par Sophie Corbillé

Fantasmagorie du capital dans un parc d'attractions globalisé

Graduate

25 000

Étudiantes et étudiants

193

Parcours de licence

192

Parcours de master

13

Sites et campus

Formations

Découvrez toute notre offre de formation

Médecine

La faculté de Médecine assure l’enseignement des 3 cycles d’études médicales : de la PASS (intégrée à la faculté) au 3e cycle incluant des DES, DESC, DU et DIU. Les enseignements sont dispensés principalement sur deux sites : Pitié-Salpêtrière et Saint-Antoine. La faculté dispense également des enseignements paramédicaux : l’orthophonie, la psychomotricité et l’orthoptie. Le site Saint-Antoine intègre une école de sage-femme.

Etudier à | la faculté de Médecine

La diversité des étudiants et de leurs parcours est l’une de nos richesses. Sorbonne Université s’engage pour la réussite de chacun de ses étudiants et leur propose une large offre de formations ainsi qu’un accompagnement adapté à leur profil et à leur projet.

La vie associative

La diversité des étudiants et de leurs parcours est l’une de nos richesses. Sorbonne Université s’engage pour la réussite de chacun de ses étudiants.

21 393

usagers

17 527

étudiants

715

hospitalo-universitaires

12

centres de recherche

Chiffres-clés


Découvrir les dernières parutions

Toutes les parutions

Dans les pas de Jonas

Par Serge Uzan

L’algorithme de Jonas

Dupuytren

Par /Sous la direction de Julie Cheminaud et de Claire Crignon

Ou le musée des maladies

Sexe et violences

Par Danièle Tritsch, Jean Mariani

Comment le cerveau peut tout changer

Les extraordinaires pouvoirs du ventre

Par Harry Sokol

Un fabuleux voyage à la découverte des pouvoirs de notre microbiote.

Le Grand Livre des pratiques psychomotrices

Par Anne Vachez-Gatecel, Aude Valentin-Lefranc

La Psychomotricité

Par Françoise Giromini-Mercier, Suzanne Robert-Ouvray, Cécile Pavot-Lemoine, Anne Vachez-Gatecel

Apologie de la discrétion

Par Lionel Naccache

Comment faire partie du monde ?

Le Grand Livre des pratiques psychomotrices

Par Anne Vachez-Gatecel, Aude Valentin-Lefranc

Fondements, domaines d'application, formation et recherche

Je marche donc je pense

Par Roger-Pol Droit et Yves Agid

La recherche en temps d'épidémie

Par Patrice Debré

Du sida au Covid, histoire de l'ANRS

Neurosciences cognitives

Par / Sous la direction de Mehdi Khamassi

La médecin

Par Karine Lacombe, Fiamma Luzzati

Une infectiologue au temps du corona

Le Cinéma intérieur

Par Lionel Naccache

Projection privée au cœur de la conscience

Des formations riches et exigeantes

La faculté accompagne plus de 20 000 étudiantes et étudiants vers le monde professionnel grâce à une très large offre de formations adossées à la recherche, disciplinaires et interdisciplinaires, afin de répondre à tous les défis, scientifiques, technologiques et sociétaux.

Son cycle d’intégration pluridisciplinaire et son dispositif majeure-mineure en licence, ses 80 parcours de masters, ses formations internationales, ses cursus en apprentissage et son offre de formation continue permettent de proposer des parcours riches et exigeants, adaptés aux projets de chacun, nourris par les recherches de ses enseignantes-chercheuses, enseignants-chercheurs, chercheurs et chercheuses.

Recherche

Couvrant tous les champs de la connaissance en sciences et ingénierie, la Faculté des Sciences et Ingénierie soutient la recherche au cœur des disciplines, la recherche aux interfaces, le développement de partenariat avec les entreprises, et favorise l'émergence de nouvelles thématiques pour répondre aux grands enjeux  du XXIe siècle.

La vie à | la Faculté des Sciences et Ingénierie

Que ce soit sur le campus Pierre et Marie Curie, ou dans ses trois stations biologiques, à Banyuls, Roscoff et Villefranche, la Faculté des Sciences et Ingénierie constitue à la fois un lieu d'enseignement, de recherche et d'épanouissement intellectuel, où cours, conférences, colloques, congrès, expositions et autres manifestations scientifiques rythment la vie de ses étudiants et de ses personnels.

La vie associative à la faculté des Sciences et Ingénierie

Vie associative

Découvrez la vie associative de la Faculté des Sciences et Ingénierie.



Les mondes de Saturne

Par Sébastien Charnoz, Sandrine Vinatier, Sandrine Guerlet, Alice Le Gall

Les mystères de Saturne révélés !

Du Laboratoire Arago à l'Observatoire océanologique de Banyuls

Par / Sous la direction de Guy Jacques et de Yves Desdevises

Une épopée humaine et scientifique

Stem Cell Biology and Regenerative Medicine

Par Charles Durand & Pierre Charbord

River Publishers Series in Biotechnology and Medical Technology Forum