Convertisseur quantique
  • Research

A converter for quantum devices and future communications

Researchers at the Kastler Brossel Laboratory (LKB) have succeeded in building the first converter to make two types of quantum information coding communicate. This first could enable the interconnectivity of future networks.

Quantum information covers both the field of quantum communications, which allows a secure exchange of information as well as quantum computing. This makes it possible to solve problems that are currently unsolvable in reasonable amount of time.

In the race for quantum computing, many platforms are currently being developed, based on different quantum systems, such as photons, neutral atoms, ions, superconductors and semiconductors. For all these systems, several types of coding exist, and their choice depends on the specific applications and the available resources. Heterogeneity is therefore an urgent issue because there is currently no standardization of quantum telecommunications. However, these telecommunications are currently under development and could be available in the next five to ten years.

Physicist Julien Laurat and his colleagues at LKB have tackled this problem by creating a converter that allows future quantum devices to communicate with each other. This would enable the exchange of information in a future quantum internet that would rely on different machines, encodings and protocols. In the February edition of Nature Photonics, they reported the first successful demonstration of a conversion.

"We have taken on the scientific challenge of demonstrating that this conversion is possible and effective for the first time. We have designed a kind of black box that allows us to switch from one quantum information encoding to another thanks to the phenomenon of entanglement," explains the researcher. The subject of the 2022 Nobel Prize in Physics, at the heart of the current quantum revolution, quantum entanglement describes the fact that two particles (or groups of particles) form a linked system, and present quantum states that depend on each other regardless of the distance that separates them. "It describes correlations between beams of light that cannot be explained by classical physics," says the researcher. By using this phenomenon, scientists have been able to preserve the fragile quantum coded information signal while changing the basis on which it is written. "The second quantum revolution is driven by the ability to exploit and control entanglement at the quantum level. The ability to create, manipulate and distribute entanglement opens the door to many new applications and technologies that cannot be achieved with classical systems alone," says Tom Darras, first author of the study and CEO and co-founder of quantum startup Welinq.

“The success of this process is an important step for quantum technology infrastructures. Once we can interconnect quantum devices, more complex and efficient networks can be built," says Beate Asenbeck, a doctoral student at LKB who participated in the demonstration. “It's amazing to think that with the technology of just ten years ago, this task would have been nearly impossible. It's a very exciting moment to see our fundamental understanding of the quantum realm is pushing our technological limits."

Even though they have no direct industrial competition on this subject today, the researchers filed a patent carried by Satt Lutech to protect their innovation. This patent is now used by the start-up Welinq, which was founded by physicists Julien Laurat and Tom Darrras, who are the driving force behind this scientific breakthrough.


1 Sorbonne University, CNRS, ENS-Université PSL, Collège de France

Courses

Discover our courses catalog

Medicine

The Faculty of Medicine teaches the 3 cycles of medical studies: from PASS (integrated into the faculty) to the 3rd cycle including DES, DESC, DU and DIU. The lessons are given mainly on two sites: Pitié-Salpêtrière and Saint-Antoine. The faculty also provides paramedical education: speech therapy, psychomotricity and orthoptics. The Saint-Antoine site includes a midwifery school.

Study | at the faculty of medicine

One of our riches is the diversity of students and their backgrounds. Sorbonne University is committed to the success of each of its students and offers them a wide range of training as well as support adapted to their profile and their project.

Associative life

One of our riches is the diversity of students and their backgrounds. Sorbonne University is committed to the success of each of its students.

21 393

users

17 527

students

715

Doctors in medecine and research

12

Research centers

Chiffres-clés
Welcome to Sorbonne University's Faculty of Science & Engineering

A unique combination of courses and expertise

Our international study programmes are organised according to the major disciplinary areas of the faculty. They represent the graduate study programmes that are not strictly conducted in French or that could be suitable (in part) for non French-speaking students. They also reflect part of the diversity of the disciplines involved and the bi- and inter-disciplinary aspects of many of the courses we offer.

 

Research & Innovation

We rely on disciplinary skills and on interdisciplinary approaches to renew concepts, methods and research subjects and to focus on some of the crucial issues faced by our societies: transformations affecting the very construction of knowledge (data, AI), the treatment of complex objects (the environment, marine and ocean sciences, cultural heritage) or our contributions to addressing societal challenges (climate change, healthcare).

Study at | The Faculty of Science & Engineering

Our campuses offer different and unique experiences to our students, visitors and staff. Resources and support services are also available to ensure an equal chance at success to all.

Campus Life

In addition to the cultural activities and events organised throughout the year by our clubs and societies, the Parismus society organises numerous events, evenings and cultural visits that will help you discover France and its parisian life.

23

ACADEMIC DEPARTMENTS & INSTITUTE

72

RESEARCH UNITS

22,000

STUDENTS

Sorbonne University's Faculty of Science & Engineering, Oriented towards excellence